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The isentropic supersonic flow in a duct under conditions of interaction of cent- 
ered compression and rarefaction wave is considered. Such flow may occur, 
for instance, in the inlet part of certain optimal asymmetric nozzles [l] and, 
aIso, in the case of a deflected supsraoaic stream. This essentially depends 
on the behavior of solution of the Da&oust equation near the degeneration line 
for boundary conditions specified at some distance from the latter. It is shown 
that t&e considered flow obtaius only when the Mach number of the stream in 
the duct inlet exceeds some value higher than unity. Some numericai results 
are presented. 

1. Let us consider an isentropic plane supersonic ilow in a duct d&net as follows. 
A horizontal uniform supersonic stream flows through cross section ao (Fig. 1, a) at 
Mach number Mi, Mi > Mr* > 1, where Iw,* is some number which is to be 
determined. A simple centered rarefaction wave in which 8 - h (M) = --h (ME), 
where 8 is the angle of inclination of the velocity vector and function h (M) for a 
polytopic gas with adiabatic exponent x is of the foIm 

h (iIf) = h arctg (k-l fn) - arctg jfMa - 1, h= v- x+l 
x - 1 

Segment op of the lower wall is horizontal and the shape of the wall along pb 
is such that a simple compmsaion wave cdb is focused at point d at which 0 + h 
(M) = 6, + h (MC), where 0, = h (M,) - h (MI). In the region UCd the 
flow parameters are constant: M = M, and 8 = 8,. The Mach number along 
the characteristic db is equal 191r and 8 at db is equal 28,. 

The second duct (Fig. 1, b) differs from the first in that it is curved right from the 
beginning of the intake section ao. The Mach number Mb at db is, consequently, 

determined by the following relations Cl]: 

2f (Ml) = f (Mb), f (M) = (1 + %+ ‘VP)* (‘W -1) -‘/r 

6 
1 

= - 2(X--1) 
of metest are the flows in regions pcb (Fig. 1, a) and qpcb (Fig. 1, b) of th- 

two ducts. It can be shown that at fairly high Mr the supersonic flows in these 
regions of both ductrr can be madily determined. On the other hand, it is c&ear on 

similarity considerations that at Mi = 1 supersonic flows are unobtainable in these 

ducts. We can, therefore, presume the eXiStaX of numbers Ml* = MI*, (M,, X), 
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obviously different for each duct, such that it is possible to design supersonic ducts of 
the type shown in Fig. 1 for il!fr > &f’r* . Elucidation of this problem will make it 
possible to indicate the range of admissible numbers Mr for asymmetric nozzles con- 
sidered in [YJ. 

a b 

- 
5 

Fig. 1 Fig. 2 

The flows in regions pcb and qpcb are determined by solving the Goursat prob- 
lem using the known data along the characteristics pc and cb. We pass to the pla- 
neofRie&nninvadants. Let rj=fj+h(M) and % =e--h(M)and 9 be 
the stream function selected so that $P = 1 and r&, = 0. The plane isentropic 
supersonic flow is defined by the Darbarx equation [Z, 31 

*-,(,-5)(&g) =o (1.1) 

Function g (r-j - %) may be represented in parametric form. For a polytropic 
gas we have 

3 q (7 - %I (1.2) 

In the plane %, rj segments pc and cb correspond to characteristics pc and 
cb (Fig. 2). In the case of the first duct we have 

%P = --h (MI), ‘IP = h (Mrf, EC = %P, 
%b = 2h (MC) - 3f5 (MI), 

?je = 2h (MC) - 12 (JJ,) 
rib = Q 

In the case of the second duct point b shifts somewhat to the right without reach- 
ing the straight line “‘1 - % = 0. Values of 9 on pc and cb (Fig. 2) in terms of 

‘tl and f; , respectively, are known and may be represented in parametric form. 
The determination of flow in region pcb or gpCb is thus reduced to the Goursat 

problem for the Darboux equation (1.1) in region mpcbn (Fig. 2). In Fig. 2 segments 
pm and bn correspond to characteristics pm and hn of the second and first sets in 

Fig. 1, a. Segment mn of the straight line ‘11 = f in Fig. 2 corresponds to curve mn 
in Fig. 1, and the Mach number along mn is equal unity. 

Three cases are possible. 
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Along segment mn *P$P==~, 
1 :have q-_>(I, i.e. 

hence along the lint 9 = I#~ = 
M) 1. ~~c~a~~c~ob~~~ 

in region pc-b (opebql) including the lower wali ob (Fig. I). 
2’. Along segment mR $Zr 1 with the equality satksfied at least at one 

poiot In his case a supereonfc tlow is still realized in region pcb (opcbq) (Fig. I), 
but the IOWU ~43 C~XXWIS it 1-t one pa&t at which _&f = 3 I i.e. the vwty 
is sonic. 

3’. Along some sections of segment mx 9 < 1. UI t&s case no supm~flovv 

obtains in the considered duct. 
It is obviursly poeafbie to select MI and M,+ so as to obtain the fiat casct. The 

pddlfty of rtsuZbg fhe second and third cases depends on the behaviour of the 
solution of the Darboux equation near the degqnerat&on line q - E = 0 (it follows 
from(L2)that g(q - E)-+m as q - f + 0) with the boundary condftipnt de- 
fined away from that line. This problem it dsalt~tith in Sect. 2: WC ahall only point 
out here that the solution of 4. (1.1) with functiou g (q - E) of the form ( 1.2) has 
abMdedkIitwhen q--gE_t, providedtheboundarycondiWnson pc andcb 
are also bounded. 

It can be shown that the latter prop&y ha8 the following m*ning relative to the 
considered flows. If for some MI and M, a superaonk flow is realized, i. e. we 
have case I’, then, by maWaWing MC con&& or varying wit&t Mme specifkd 
limits and reducing Mr to some Jz#‘~* > 1, we o&&i a duct big a,qer- 
suricfiowwfthsonfcpoirttsonthelower wa& Furtherdecnaseof & IeadstoCase 
3”inw~~asapsaoaicaowinth&ductisnd,~~lu 

Let us ill&rate the above on the example of the f&t dnct, aratmfng that MI and 
nf, are~~~ta~~~w~~~~~c~ but~~~e~~c 

region of influence of charactedatics‘ PC and cb isboundedbythcstraightlineq- 
g = 0 (Fi& 2). Sfnce vahtes of (g along segment mn are bounded, the truncated 

square mph in Fig, 2 corresponds in the phyafcal plane to region mpcfin (Fig. 1, a) 
of finite dimemions, which meana that the sortie line 8888 is at a flaite distance from 
triangle cad a charactorfstic dfausruioo of the triangle, e.g., the lag@ of segment 

ad serves 8% the unit of meaauremenL For flxed M, and decreasing MI the config- 
uration and position of the sonic line segment remains unchanged in the coordinate 9- 
stem attached to triangle acd, al&xagh the son& ifne ~~~c~~~ng to the 
increase of angle pat. Since the ratio of the length of segment ad to croQ s&ion 

a0 temistQzeroasM~- 1, thue&~&anM,* suchrhatwbnM1=M,* the 
~~~r~~~~w~w&~ pb oftheduct, 

We paas to numerical rerults obtained by the method of characteristks in the case 
in which the two riuctr rqrcsent tht ial& pada of asymmetric SuperSonic noatrrh that 
provide at their U,&WS a uniform tmrimmW stmam at hbch number Me IX To 
Ob~tfifrftftase~torhontsaths~~~cODtOIUatsornepdnt s JoattooWaU 
za Q 26 and, then, complete tpIc lower and upper c@ours as &own in Ffg.3. The 

porftian0fp0tnt 8 mu8tberuchajto8atWytherpscf;ltari~tfonatpo~t f. 
it GUI bo ~aifltd that tb OumbQLI M,, Ml, and MC art l@W by b relatt&P 

%h(Md= ~(~~) -I- WW 
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Fig. 3 

u 

in what follows linear dimensions are normalized with respect to dimension au . The 
dependence on 2 of the Mach number distribution along OS is shown in Fig, 4, where 
variant a relates to the first duct, and variant b to the second. Note that the comer 
points on curves relate to points P or 4 , and that for xg > 2 
may also have another burn, 

the curves in Fig. 4, b 
It can be assumed that in the considered cases Jfz* 

z 1.37 and &Z,* z 1.06 for the first and second ducts, respectively. For these val- 
ues it was at least impossible to carry out calculations even using 600 points on the in- 
take characteristic. 

Note that the ilow in the region above the streamline pas&g through point P (Fig. 
1, b) is similar to the flow in the first duct. Owing to this, the curves in Fig, 4 and the 
adduced above Mach numbers Bfl* for the first and second ducts define to a certain 
extent the rate of “floating up” of the sonic line with decreasing number M,. 

2. Let us investigate the behavior of solution of the Darboux equation near the 
degeneration line with boundary conditions specified at some distance frornthat line. 

We begin by considering the Goursat problem for the Darhoux equation 
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%I& - g (rl - Ebl - 4%) = 0 (2.1) 

3) = @ (El, rl = w, t < 5 < k 
* = F (4, E = 1, t<q<w 

Function g (2) is determinate in the interval 0 < z ( w - I and sati&~~ the 
fo~o~gc~ff~ g(z)>%O<Zdw-land g(z)+00 asz+O. 

Valuesof w,t,.4andksatisfytheinequalitSes w--l>>, w-k> 0, 
t- l>O,and t- k < 0. In the above intervals the first dedvativu of functions 
@ and F are cosltfnuous and bcnmded, tie it is possible to -me that f F’ J < 
K, 1 tD’ I\< K, and R < 00. Maaeover F (w) = Q, (I). 

&low,~e”@=ated”r@ct=@e (Z<E\<k,t< q\<w, q-_>Oo) 
is denoted by IV , An example of such re@oa is given by the truncated square in Fig. 
2, 

We introduce the auxilliary fimctionz f aqd cp which wiU be achy req&ed 

Bothftmc~arede~atefor o<z\< W-i and, ifthesingukity of 
function g (4 it integrable with ‘2 =O, f and cp aredeterminate&owhtn z 
= 0. . 

Theorem 1. Aob~m(2,l)hara~qutso~~oainrrrgion W, exceptat 
poini3 q-~==O~.Theestimates 

ppqI<KqJ(rl-9, l4+VGJ(rl--E.) 
(2.2) 

are tbenvalid far \ps and 9~ . ~ntheeeaizna~ K isaconstantthatbaurids 
fromabove [F’jand]Q)‘1,and q((r\-~)isthefuOctiondefMedabove. 

PrOQf. Pmblern(2.1~canbesubsUtutediaregirw w, e=ptatpai~ q - 
5 = 0 by the equtvalent system of integral cscpratfono 

(2.3) 

TO prove the COn~8rgwt Of them V and of their t2atklrla~-m ShalLccon- 

sider the r&s L&I - %I and %X+X - u,,. Xt can be shown by inductiion that 
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Using the definition of function v(z) from (2.5) we obtain 

which, in turn, implies that the sequencies % and an also converge to some limits, 
and that the estimates (2.2) are valid for $,, = v = lim v, and 9~ = u = lim n,, 

Passing to limit in formulas (2.4) we find that the limit functions U and U satis- 
fy system (2.3) and, conseqnently, are solutions of problem (2.1). 

The proof of uniqueness of the derived solution is conveutional and is omitted here. 
Note that the existence and nniqueuess of solution of problem (2.11, in region W, 

except the band 0 < q - % < e follows from the theorem derived, for instance, 
in [43. However the obtained there estimates make it impossible to pass to limit with 
e --f 0, since they contain the quantity A = max g (q - %) which increases in- 

definitely with increasing q - 5 -+ 0. 
Let us consider some properties of sol&ion when rt - % + 0. 
T h e o r e m 2. If function g (a) tends to infinity slower than Z-B, fi < j 

when z 3 0 , then 9, tj~~, and $8 have finite limits when q - f + 0. When 
function g (z) can be represented in the form g (2) = az-’ -J- q (z), where J q (z) 1 
< c@-', C > 0, y > 0, then for a < l/s function 9 has a finite limit when 
q - 5 + 0. (We recall that function g of the Darboux equation (1.1) which de- 

fines plane supersonic flows of polytropic gas with a = l/e can be represented in 
this form). 

The validity of both statements follows from estimates (2.21, definition of fimcti- 
011s f(z) and g, (z), and from that a singularity of the type z-h is integrable as 2 -+ 

O=d 3L<l. 

The author thanks A. N. Kraiko and V. N, Vragov for their interest in this work 
and useful discussions. 
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