ON THE DEGENERATION OF SUPERSONIC FLOW DUE TO INTERACTION OF CENTERED COMPRESSED AND RAREFACTION WAVES

PMM, Vol. 43, No. 1, 1979, pp. 45-50
A. I. RYLOV
(Novosibirak)
(Received February 20, 1978)

The isentropic supersonic flow in a duct under conditions of interaction of centered compression and rarefaction waves is considered. Such flow may occur, for instance, in the inlet part of certain optimal asymmetric nozzles [1] and, also, in the case of a deflected supenonic stream. This escentially depends on the behavior of solution of the Darboux equation near the degeneration line for boundary conditions specified at some distance from the latter. It is shown that the considered flow obtains only when the Mach number of the stream in the duct inlet exceeds some value higher than unity. Some numerical results are presented.

1. Let us consider an isentropic plane supersonic flow in a duct defines as follows. A horizontal uniform supersonic stream flows through cross section ao (Fig. 1, a) at Mach number $M_{1}, M_{1}>M_{\mathrm{r}}{ }^{*}>1$, where $M_{1}{ }^{*}$ is some number which is to be determined. A simple centered rarefaction wave in which $\theta-h(M)=-h\left(M_{\mathrm{I}}\right)$, where θ is the angle of inclination of the velocity vector and function $h(M)$ for a polytopic gas with adiabatic exponent x is of the form

$$
h(M)=\lambda \operatorname{arctg}\left(\lambda^{-1} \sqrt{M^{2}-1}\right)-\operatorname{arctg} \sqrt{M^{2}-1}, \quad \lambda=\sqrt{\frac{x+1}{x-1}}
$$

Segment op of the lower wall is horizontal and the shape of the wall along $p b$ is such that a simple compression wave $c d b$ is focused at point d at which $\theta+h$ $(M)=\theta_{c}+h\left(M_{c}\right)$, where $\theta_{c}=h\left(M_{c}\right)-h\left(M_{1}\right)$. In the region acd the flow parameters are constant: $M=M_{c}$ and $\theta=\theta_{c}$. The Mach number along the characteristic $d b$ is equal M_{I} and θ at $d b$ is equal $2 \theta_{c}$.

The second duct (Fig. 1, b) differs from the first in that it is curved right from the beginning of the intake section ao. The Mach number M_{b} at $d b$ is, consequently, determined by the following relations [1]:

$$
\begin{aligned}
& 2 f\left(M_{1}\right)=f\left(M_{b}\right), \quad f(M)=\left(1+\frac{x-1}{2} M^{2}\right)^{\delta}\left(M^{2}-1\right)^{1 / 4} \\
& \delta=-\frac{1}{2(x-1)}
\end{aligned}
$$

Of interest are the flows in regions $p c b$ (Fig. 1, a) and $q p c b$ (Fig. 1, b) of these two ducts. It can be shown that at fairly high M_{I} the supessonic flows in these regions of both ducts can be readily determined. On the other hand, it is clear on similarity considerations that at $M_{1}=1$ supersonic flows are unobtainable in these ducts. We can, therefore, presume the existence of numbers $M_{1}{ }^{*}=M_{I}{ }^{*},\left(M_{c}, x\right)$,
obviously different for each duct, such that it is possible to design supersonic ducts of the type shown in Fig. 1 for $M_{I}>M_{\mathrm{I}}{ }^{*}$. Elucidation of this problem will make it possible to indicate the range of admissible numbers M_{I} for asymmetric nozzles considered in [1].

Fig. 1

Fig. 2

The flows in regions $p c b$ and $q p c b$ are determined by solving the Goursat problem using the known data along the characteristics $p c$ and $c b$. We pass to the plane of Riemann invariants. Let $\eta=\theta+h(M)$ and $\xi=\theta-h(M)$ and ψ be the stream function selected so that $\psi_{p}=1$ and $\psi_{a}=0$. The plane isentropic supersonic flow is defined by the Darboux equation [2,3]

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial \eta \partial \xi}-g(\eta-\xi)\left(\frac{\partial \psi}{\partial \eta}-\frac{\partial \psi}{\partial \xi}\right)=0 \tag{1,1}
\end{equation*}
$$

Function $g(\eta-\xi)$ may be represented in parametric form. For a polytropic gas we have

$$
\begin{aligned}
& \eta-\xi=2 h(M), \quad g(\eta-\xi)=\frac{(x+1) M^{4}}{8\left(M^{2}-1\right)^{3 / 2}}=\frac{1}{6(\eta-\xi)}+q(\eta-\xi) \\
& |q(\eta-\xi)|<C(\eta-\xi)^{\gamma-1}, \quad C>0, \quad \gamma>0
\end{aligned}
$$

In the plane ξ, η segments $p c$ and $c b$ correspond to characteristics $p c$ and $c b$ (Fig. 2). In the case of the first duct we have

$$
\begin{aligned}
& \xi_{p}=-h\left(M_{1}\right), \quad \eta_{p}=h\left(M_{1}\right), \quad \xi_{c}=\xi_{p}, \quad \eta_{c}=2 h\left(M_{c}\right)-h\left(M_{1}\right) \\
& \xi_{b}=2 h\left(M_{c}\right)-3 h\left(M_{1}\right), \quad \eta_{b}=\eta_{c}
\end{aligned}
$$

In the case of the second duct point b shifts somewhat to the right without reaching the straight line $\eta-\xi=0$. Values of ψ on $p c$ and $c b$ (Fig. 2) in terms of η and ξ, respectively, are known and may be represented in parametric form.

The determination of flow in region $p c b$ or $q p c b$ is thus reduced to the Goursat problem for the Darboux equation (1.1) in region mpcbn (Fig. 2). In Fig. 2 segments $p m$ and $b n$ correspond to characteristics $p m$ and $h n$ of the second and first sets in Fig. 1, a. Segment $m n$ of the straight line $n=\xi$ in Fig. 2 corresponds to curve $m n$ in Fig. 1, and the Mach number along $m n$ is equal unity.

Three cases are possible.
1°. Along segment $m n \quad \psi>\psi_{p}=1$, hence along the line $\psi=\psi_{p}=$ 1 we have $\eta-\xi>0$, i. e. $M>1$. In this case a supersonic flow obtains in region $p c b$ (opebq) including the lower wall $o b$ (Fig. 1).
2°. Along segment $m n \quad \psi \geqslant 1$ with the equality satisfied at least at one point. In this case a supesonic flow is still realized in region $p c b$ (opcbq) (Fig. 1), but the lower wall contains at least one point at which $M=1$. i. e. the velocity is sonic.
3°. Along some sections of segment $m n \quad \psi<1$. In this case no supersonic flow obtains in the considered duct.

It is obviously possible to select M_{1} and M_{c} so as to obtain the first case. The possibility of realizing the second and third cases depends on the behaviour of the solution of the Darboux equation near the degeneration line $\eta-\xi=0$ (it follows from (1.2) that $g(\eta-\xi) \rightarrow \infty$ as $\eta-\xi \rightarrow 0$) with the boundary conditions defined away from that line. This problem is dealt with in Sect, 2; we shall only point out here that the solution of Eq. (1.1) with function $g(\eta-\xi)$ of the form (1.2) has a bounded limit when $\eta-\xi \rightarrow 0$, provided the boundary conditions on $p c$ and $c b$ are also bounded.

It can be shown that the latter property has the following meaning relative to the considered flows. If for some M_{1} and M_{c} a supensonic flow is realized, i. e. we have case 1°, then, by maintaining M_{c} constaat or varying within some specified limits and reducing M_{1} to some $M_{1}^{*}>1$, we obtain a duct containing a supersonic flow with sonic points on the lower wall. Further decrease of M_{I} leads to Case 3° in which a supersonic flow in the duct is not pomible.

Let us illustrate the above on the example of the first duct, asmuming that M_{1} and M_{c} are such that a supersonic flow is realized in the duct, but with the supersonic region of influence of characteristics $p c$ and $c b$ is bounded by the straight line η $\xi=0$ (Fig. 2). Since values of ψ along segment $m n$ are bounded, the truncated square mpcbn in Fig. 2 corresponds in the physical plane to region mpcbn (Fig. 1, a) of furite dimensions, which means that the sonic line $m n$ is at a finite distance from triangle cad a characteristic dimension of the triangle, e. g., the length of segment ad serves as the unit of measurement. For fixed M_{c} and decreasing M_{1} the configuration and position of the sonic line segment remains unchanged in the coondinate system attached to triangle acd, although the sonic line lengthincreases owing to the increase of angle pac. Since the ratio of the length of segment ad to cross section ao tends to zero as $M_{1} \rightarrow 1$, there exists an $M_{1}{ }^{*}$ such that when $M_{1}=M_{1}{ }^{*}$ the sonic line reaches the lower wall $p b$ of the duct.

We pass to numerical reaults obtained by the method of characteristics in the case in which the two ducts represent the inlet parts of asymmetric supenonic nozzles that provide at their outlets a uniform horizontal stream at Mach number M_{2} [1]. To obtain this it is necessary to shoiten the lower contour at some point s so as to obtain $x_{3} \leqslant x_{b}$ and, then, complete the lower and upper contours as shown in Fig. 3. The potition of point s must be such as to satiafy the specifted condition at point f.

It can be verified that the numbers M_{2}, M_{1}, and M_{c} are linked by the relationship $2 h\left(M_{c}\right)=h\left(M_{2}\right)+h\left(M_{1}\right)$.

These calculations were carried out for $M_{2}=4, x=1.4$, and $x_{3} \leqslant 2$. Here and

Fig. 3

Fig. 4
in what follows linear dimensions are normalized with respect to dimension ao. The dependence on x of the Mach number distribution along os is shown in Fig. 4, where variant a relates to the first duct, and variant b to the second. Note that the comer points on curves relate to points p or q, and that for $x_{s}>2$ the curves in Fig. $4, \mathrm{~b}$ may also have another minimum. It can be assumed that in the considered cases $M_{1}{ }^{*}$ ≈ 1.37 and $M_{1}{ }^{*} \approx 1.06$ for the first and second ducts, respectively. For these values it was at least impossible to carry out calculations even using 600 points on the intake characteristic.

Note that the flow in the region above the streamline passing through point p (Fig. 1, b) is similar to the flow in the first duct. Owing to this, the curves in Fig. 4 and the adduced above Mach numbers $M_{1}{ }^{*}$ for the first and second ducts define to a certain extent the rate of "floating up" of the sonic line with decreasing number M_{1},
2. Let us investigate the behavior of solution of the Darboux equation near the degeneration line with boundary conditions specified at some distance from that line.

We begin by considering the Goursat problem for the Darboux equation

$$
\begin{align*}
& \psi_{\eta \xi}-g(\eta-\xi)\left(\psi_{\eta}-\psi_{\xi}\right)=0 \tag{2.1}\\
& \psi=\Phi(\xi), \quad \eta=w, \quad l \leqslant \xi \leqslant k \\
& \psi=F(\eta), \quad \xi=l, \quad t \leqslant \eta \leqslant w
\end{align*}
$$

Function $g(z)$ is determinate in the interval $0<z<w-l$ and satisfies the following conditions: $g(z)>0,0<z \leqslant w-l$ and $g(z) \rightarrow \infty$ as $z \rightarrow 0$.

Values of w, t, l, and k satisfy the inequalities $w-l>0, w-k>0$, $t-l>0$, and $t-k<0$. In the above intervals the first derivatives of functions Φ and F are continuous and bounded, hence it is posible to amume that $\left|F^{\prime}\right| \leqslant$ $K,\left|\Phi^{\prime}\right| \leqslant K$, and $K<\infty$. Moseover $F(w)=\Phi(l)$.

Below, the "trancated" rectangle $\{l \leqslant \xi \leqslant k, t \leqslant \eta \leqslant w, \eta-\xi>0\}$ is denoted by W. An example of such region is given by the truncated square in Fig. 2.

We introduce the auxilliary functions f and φ which will be subsequently required

$$
f(z)=2 \int_{z}^{v-l} g(z) d z, \quad \varphi(z)=e^{f(z)}
$$

Both functions are determinate for $0<z \leqslant w-l$ and, if the singularity of function $g(z)$ is integrable with $z=0, f$ and φ are determinate also when z $=0$.

Theorem 1. Problem (2.1) has a unique solution in region W, except at points $\eta-\xi=0$. The eatimates

$$
\begin{equation*}
\left|\psi_{\eta}\right| \leqslant K \varphi(\eta-\xi), \quad\left|\psi_{\xi}\right| \leqslant K \varphi(\eta-\xi) \tag{2,2}
\end{equation*}
$$

are then valid for ψ_{η} and ψ_{y}. In these estimates K is a constant that bounds from above $\left|F^{\prime}\right|$ and $\left|\Phi^{\prime}\right|$, and $\varphi(\eta-\xi)$ is the function defined above.

Proof. Problem (2.1) can be substituted in region W, except at points η $\xi=0$ by the equivalent syatem of integral equations

$$
\begin{align*}
& v=\int_{i}^{\xi} g(\eta-\xi)(v-u) d \xi+F^{\prime}(\eta) \tag{2.3}\\
& u=-\int_{\eta}^{w} g(\eta-\xi)(v-u) d \eta+\Phi^{\prime}(\xi) \quad\left(v=\psi_{\eta}, u=\psi_{\xi}\right)
\end{align*}
$$

We solve this system by the method of succeasive approximations. Let

$$
\begin{align*}
& v_{0}=F^{\prime}(\eta), \quad u_{0}=\Phi^{\prime}(\xi) \tag{2,4}\\
& v_{n}=\int_{i}^{\xi} g(\eta-\xi)\left(v_{n-1}-u_{n-1}\right) d \xi+E^{\prime}(\eta) \\
& u_{n}=-\int_{\eta}^{w} g(\eta-\xi)\left(v_{n-1}-u_{n-1}\right) d \eta+\Phi^{\prime}(\xi), \quad n=1,2, \ldots
\end{align*}
$$

To prove the convergence of these sequences and of their extimates we shall consider the rests $v_{n+1}-v_{n}$ and $u_{n+1}-u_{n}$. It can be shown by induction that

$$
\begin{equation*}
\left|v_{n}-v_{n-1}\right| \leqslant K \frac{(f(\eta-\xi))^{n}}{n!}, \quad\left|u_{n}-u_{n-1}\right| \leqslant K \frac{(f(\eta-\xi))^{n}}{n!} \tag{2.5}
\end{equation*}
$$

Using the definition of function $\varphi(z)$ from (2.5) we obtain

$$
\begin{aligned}
& \sum_{1}^{\infty}\left|v_{n}-v_{n-1}\right| \leqslant K \sum_{1}^{\infty} \frac{(f(\eta-\xi))^{n}}{n!}=K(\varphi(\eta-\xi)-1) \\
& \sum_{1}^{\infty}\left|u_{n}-u_{n-1}\right| \leqslant K(\varphi(\eta-\xi)-1)
\end{aligned}
$$

which, in turn, implies that the sequencies v_{n} and u_{n} also converge to some limits, and that the estimates (2.2) are valid for $\psi_{\eta}=v=\lim v_{n}$ and $\psi_{\xi}=u=\lim u_{n}$

Passing to limit in formulas (2.4) we find that the limit functions u and v satisfy system (2.3) and, consequently, are solutions of problem (2.1).

The proof of uniqueness of the derived solution is conventional and is omitted here.
Note that the existence and uniqueness of solution of problem (2.1), in region W, except the band $0<\eta-\xi \leqslant \varepsilon$ follows from the theorem derived, for instance, in [4]. However the obtained there estimates make it impossible to pass to limit with $\varepsilon \rightarrow 0$, since they contain the quantity $A=\max g(\eta-\xi)$ which increases indefinitely with increasing $\eta-\xi \rightarrow 0$.

Let us consider some properties of solution when $\eta-\xi \rightarrow 0$.
Theorem 2. If function $g(z)$ tends to infinity slower than $z^{-\beta}, \beta<1$ when $z \rightarrow 0$, then ψ, ψ_{η}, and ψ_{ξ} have finite limits when $\eta-\xi \rightarrow 0$. When function $g(z)$ can be represented in the form $g(z)=\alpha z^{-1}+q(z)$, where $|q(z)|$ $<C z^{\nu-1}, C>0, \gamma>0$, then for $\alpha<1 / 2$ function ψ has a finite limit when $\eta-\xi \rightarrow 0$. (We recall that function g of the Darboux equation (1. 1) which defines plane supersonic flows of polytropic gas with $\alpha=1 / 6$ can be represented in this form).

The validity of both statements follows from estimates (2.2), definition of functions $f(z)$ and $\varphi(z)$, and from that a singularity of the type $z^{-\lambda}$ is integrable as $z \rightarrow$ 0 and $\lambda<1$.

The author thanks A. N. Kraiko and V. N. Vragov for their interest in this work and useful discussions.

REFERENCES

1. Rylov, A. I., Solution of the variational problem of nozzle profiling for a uniform supersonic stream. Izv. Akad, Nauk SSSR, MZhG. No, 4, 1974.
2. Ovsiannikov, L. V., Lectures on Gasdynmics Fundamentals. Izd. Novosibirsk Univ., 1967.
3. S e do v, L. I., Plane Problems of Hydrodynamics and Aerodynamics. Moscow, "Nauka", 1966.
4. S obolev, S. L., Equations of Mathematical Physics. Moscow, "Nauka", 1966. (see also English translation, Pergamon Press, Book No. 10424, 1964).

Translated by J. J. D.

